

	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 1 (Topic 1 parts a&b)			
Topic	Student Checklist	R	Α	G
	Describe how the Dalton model of an atom has changed over time because of the discovery of subatomic particles			
	Describe the structure of an atom as a nucleus containing protons and neutrons, surrounded by electrons in shells			
	Recall the relative charge and relative mass of: a proton, a neutron and an electron			
	Explain why atoms contain equal numbers of protons and electrons			
	Describe the nucleus of an atom as very small compared to the overall size of the atom			
	Recall that most of the mass of an atom is concentrated in the nucleus			
	Recall the meaning of the term mass number of an atom			
	Describe atoms of a given element as having the same number of protons in the nucleus and that this number is unique			
	Describe what isotopes are			
	Calculate the numbers of protons, neutrons and electrons in atoms given the atomic number and mass number			
part a	Explain how the existence of isotopes results in relative atomic masses of some elements not being whole numbers			
Topic 1a – Key concepts in chemistry (part a)	HT ONLY: Calculate the relative atomic mass of an element from the relative masses and abundances of its isotopes			
Jen	Describe how Mendeleev arranged the elements known at that time, in a periodic table by using			
u ct	properties of these elements and their compounds			
epts i	Describe how Mendeleev used his table to predict the existence and properties of some elements not discovered by then			
/ conc	Explain that Mendeleev thought he had arranged elements in order of increasing relative atomic mass but this was not always true			
ı – Key	Explain the meaning of atomic number of an element in terms of position in the periodic table and number of protons in the nucleus			
c 1a	Describe how elements are arranged in the groups and periods of the periodic table			
Topi	Identify elements as metals or non-metals according to their position in the periodic table, explaining this division in terms of atomic structure			
	Predict the electronic configurations of the first 20 elements in the periodic table as diagrams and in the form 2.8.1 etc			
	Explain how the electronic configuration of an element is related to its position in the periodic table			
	Explain how ionic bonds are formed to produce cations and anions, including the use of dot and cross diagrams			
	Recall that an ion is an atom or group of atoms with a positive or negative charge			
	Calculate the numbers of protons, neutrons and electrons in simple ions given the atomic number and mass number			
	Explain the formation of ions in ionic compounds from their atoms, limited to compounds of elements in groups 1, 2, 6 and 7			
	Explain the use of the endings –ide and –ate in the names of compounds			
	Deduce the formulae of ionic compounds given the formulae of the constituent ions			
	Explain the structure of an ionic compound including a description of the lattice and electrostatic forces			
L		1		<u>ا</u>

Personalised Learning Checklists Edexcel Combined: Chemistry Paper 1

		, , , , , , , , , , , , , , , , , , , 	1	
	Explain how a covalent bond is formed when a pair of electrons is shared between two atoms	+		
	Recall that covalent bonding results in the formation of molecules	+		
	Recall the typical size (order of magnitude) of atoms and small molecules	+		
	Explain the formation of simple molecular, covalent substances, using dot and cross diagrams, including: H, HCl, H ₂ 0, CH ₄ , O ₂ , CO ₂			I
	Explain why elements and compounds can be classified as: ionic, simple molecular (covalent), giant covalent and metallic			
	Explain how the structure and bonding of substances results in different physical properties			
	Explain the properties of ionic compounds limited to: melting/boiling points, forces between ions and conductivity			
	Explain the properties of typical covalent, simple molecular compounds limited to: melting/boiling points, forces between ions and conductivity			
	Recall that graphite and diamond are different forms of carbon and that they are examples of giant covalent substances			
(q	Describe the structures of graphite and diamond			
Topic 1b – Key concepts in chemistry (part b)	Explain, in terms of structure and bonding, why graphite and diamond have different uses			
	Explain the properties of fullerenes including C ₆₀ and graphene in terms of their structures and bonding			
	Describe, using poly(ethene) as the example, that simple polymers consist of large molecules containing chains of carbon atoms			
che	Explain the properties of metals, including malleability and the ability to conduct electricity			
ots in e	Describe the limitations of particular representations and models, to include dot & cross, ball & stick models & 2/3D			
ləcu	Describe the properties of most metals			
cor	Calculate relative formula mass given relative atomic masses			
- Key	Calculate the formulae of simple compounds from reacting masses and understand that these are empirical formulae			
1b.	Deduce: empirical formula of a compound from the formula of its molecule			
oic	Deduce: molecular formula of a compound from its empirical formula and its relative molecular mass			
Tol	Describe an experiment to determine the empirical formula of a simple compound such as magnesium oxide			
	Explain the law of conservation of mass applied to: a closed system and a non-enclosed system			
	Calculate masses of reactants and products from balanced equations, given the mass of one substance			
	Calculate the concentration of solutions in g dm ⁻³			
	HT ONLY: Recall what one mole of particles of a substance is defined as			
	HT ONLY: Calculate the number of: moles of particles of a substance in a given mass of that substance			
	and vice versa			1
	HT ONLY: Calculate the number of: particles of a substance in a given number of moles of that			
	substance and vice versa			
	HT ONLY: Calculate the number of: particles of a substance in a given mass of that substance and vice	[Ī	-
	versa			
	HT ONLY: Explain why, in a reaction, the mass of product formed is controlled by the mass of the			I
	reactant which is not in excess	\parallel		
	HT ONLY: Deduce the stoichiometry of a reaction from the masses of the reactants and products			

	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 1 (Topics 2,3&4)			
Topic	Student Checklist	R	Α	G
er	Describe the arrangement, movement and the relative energy of particles in each of the three states of matter			
States of matter and mixtures States of matter	Recall the names used for the interconversions between the three states of matter			
	Compare physical changes with chemical reactions			
0 5	Explain the changes in arrangement, movement and energy of particles during these interconversions			
ate	Predict the physical state of a substance under specified conditions, given suitable data			
Ires St	Explain the difference between the use of 'pure' in chemistry compared with its everyday use and the differences between a pure substance and a mixture			
xtu	Interpret melting point data to distinguish between pure substances and mixtures			
ind mi	Explain the experimental techniques for separation of mixtures by: simple & fractional distillation, filtration, crystallisation and paper chromatography			
era	Describe an appropriate experimental technique to separate a mixture when knowing the properties			
att	Describe what paper chromatography is and explain how it can be used to separate a mixture			
fm	Interpret a paper chromatogram: to distinguish between pure and impure substances			
O S	Interpret a paper chromatogram: to identify substances by comparison with known substances			
ate	Interpret a paper chromatogram: to identify substances by calculation and use of Rf values			
- St	Core Practical: Investigate the composition of inks using simple distillation and paper chromatography			
.2-	Describe how: waste and ground water can be made potable, including the need for sedimentation,			
Topic	filtration and chlorination			
Τc	Describe how: sea water can be made potable by using distillation			
	Describe how: water used in analysis must not contain any dissolved salts			

Personalised Learning Checklists Edexcel Combined: Chemistry Paper 1

	Recall that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide		
	ions	⊢──┤	
	Recall that the pH values of acids, alkalis and neutral		
	Recall the effect of acids and alkalis on indicators, including litmus, methyl orange and phenolphthalein		
	HT ONLY: Recall what the higher the concentration of hydrogen ions and hydroxide ions in a solution		
	does to the pH of a solution		
	HT ONLY: Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of		
	the solution decreases by 1	⊢−−∔	
	Core Practical: Investigate the change in pH on adding powdered calcium hydroxide or calcium oxide to a		
	dilute hydrochloric acid	┢───┼	
	HT ONLY: Explain the terms dilute and concentrated, with respect to amount of substances in solution		
-	HT ONLY: Explain the terms weak and strong acids, with respect to the degree of dissociation into ions	┢──┼	
	Recall what is formed when a base of any substance reacts with an acid	┢───┝	
	Recall what alkalis and bases are	┢──┼	
	Explain the general reactions of aqueous solutions of acids with: metals, metal oxides, metal hydroxides		
	and metal carbonates	┢──┼	
	Describe the chemical test for: hydrogen and carbon dioxide (using limewater)	┢──┼	
	Describe a neutralisation reaction as a reaction between an acid and a base	┢──┼	
	Explain an acid-alkali neutralisation as a reaction in which in terms of the reaction between hydrogen		
	and hydroxide ions		
	Explain why, when soluble salts are prepared from an acid and an insoluble reactant: excess reactant is added and excess insoluble reactant is removed		
	Explain why, if soluble salts are prepared from an acid and a soluble reactant: titration must be used and		
Sa	what is left after the reaction is only salt and water		
ng Bri	Core Practical: Investigate the preparation of pure, dry hydrated copper sulfate crystals starting from		
Topic 3 – Chemical changes	copper oxide including the use of a water bath		
g	Describe how to carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to		
,	prepare a pure, dry salt		
Che	Recall the general rules which describe the solubility of all common sodium, potassium and ammonium		
i m	salts		
ic 3	Recall the general rules which describe the solubility of all nitrates		
Lop	Recall the general rules which describe the solubility of common chlorides (except those of silver and		
-	lead)		
	Recall the general rules which describe the solubility of common sulfates (except those of lead, barium		
	and calcium)		
	Recall the general rules which describe the solubility of common carbonates and hydroxides (except		
	those of sodium, potassium and ammonium)		
	Predict, using solubility rules, whether or not a precipitate will be formed when named solutions are		
	mixed together, naming the precipitate if any is formed		
	Describe the method used to prepare a pure, dry sample of an insoluble salt		
	Recall that electrolytes are ionic compounds in the molten state or dissolved in water		
	Describe electrolysis as a process in which electrical energy, from a direct current supply, decomposes		
	electrolytes	⊢	
	Explain the movement of ions during electrolysis	⊢	
	Explain the formation of the products in the electrolysis, using inert electrodes, for copper & sodium		
-	chloride solution, sodium sulfate, acidified water & molten lead bromide	┢──┼	
	Predict the products of electrolysis of other binary, ionic compounds in the molten state	┢──┤	
	HT ONLY: Write half equations for reactions occurring at the anode and cathode in electrolysis	┢──┼	
	HT ONLY: Explain oxidation and reduction in terms of loss or gain of electrons		
	HT ONLY: Recall that reduction occurs at the cathode and that oxidation occurs at the anode in		
	electrolysis reactions	┢	
	Explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrolysis		
	electrodes, and how this can be used to purify copper Core Practical: Investigate the electrolysis of copper sulfate solution with inert electrodes and copper]
	electrodes		
	כובנווטעבא		

	Describe the formation of ammonia as a reversible reaction in the Haber process Recall the conditions for the Haber process HT ONLY: Predict how the position of a dynamic equilibrium is affected by changes in temperature,	
Topic 4 – Extracting metals and equilibria	Explain what is meant by dynamic equilibrium	
	direction of some reversible reactions can be altered	
	Recall that chemical reactions are reversible, the use of the symbol \rightleftharpoons in equations and how the	
	Evaluate data from a life cycle assessment of a product	
	Describe what a life time assessment for a product involves and what it needs to consider	
	Evaluate the advantages of recycling metals	
	Explain how a metal's relative resistance to oxidation is related to its position in the reactivity series	
	HT ONLY: Evaluate alternative biological methods of metal extraction (bacterial and phytoextraction)	
	series and the cost of the extraction process (electrolysis and smelting)	
	Explain why the method used to extract a metal from its ore is related to its position in the reactivity	
	Describe what oxidation and reduction are	
	(relative to carbon) Recall what ores and native metals are	
	Explain the reactivity series of metals in terms of the reactivity of the metals with water and dilute acids	
	HT ONLY: Explain displacement reactions as redox reactions, in terms of gain or loss of electrons	
	Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions	