

	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 1 (Topics 1&2)			
Topic	Student Checklist	R	Α	G
-	Recall and use the SI unit for physical quantities, as listed in the specification			
Topic 1 – Key concepts	Recall and use multiples and sub-multiples of units, including giga (G), mega (M), kilo (k), centi (c), milli			
pic 1 – Ke concepts	(m), micro (μ) and nano (n)			
pic Gon	Be able to convert between different units, including hours to seconds			
ဥ	Use significant figures and standard form where appropriate			
	Describe what scalar and vector quantities are and explain the differences			
	Recall vector and scalar quantities, including: displacement/distance, velocity/speed, acceleration,			
	force, weight/mass, momentum and energy			
	Define what velocity is			
	Recall and use the equations: (average) speed (metre per second, m/s) = distance (metre, m) ÷ time (s)			
	Recall and use the equation: distance travelled (metre, m) = average speed (metre per second, m/s) ×			
	time (s)			
	Analyse distance/time graphs including determination of speed from the gradient			
	Recall and use the equation: <i>α</i> =(<i>ν</i> - <i>u</i>)/ <i>t</i>			
	Use the equation: $v^2 - u^2 = 2 \times a \times x$			
	Analyse velocity/time graphs to: compare acceleration from gradients qualitatively			
	Analyse velocity/time graphs to: calculate the acceleration from the gradient (for uniform acceleration			
	only)			
	Analyse velocity/time graphs to: determine distance travelled using area between the graph line and			
	the axis (for uniform acceleration only)			
	Describe a range of laboratory methods for determining the speeds of objects such as the use of light			
	gates			
	Recall some typical speeds encountered in everyday experience for wind and sound, and for walking,			
	running, cycling and other transportation systems			
es	Recall Newton's first law and use it where the resultant force on a body is zero			
Topic 2 – Motion and forces	Recall Newton's first law and use it where the resultant force is not zero			
β	Recall and use Newton's second law as: F = m x a			
a	Define weight, recall and use the equation: W = m x g			
ö	Describe how weight is measured			
ŽQ.	Describe the relationship between the weight of a body and the gravitational field strength			
1	Core Practical: Investigate the relationship between force, mass and acceleration by varying the masses			
c 2	added to trolleys			ļ
<u>id</u>	HT ONLY: Explain that an object moving in a circular orbit at constant speed has a changing velocity			ļ
-	HT ONLY: Explain that for motion in a circle there must be a resultant force known as a centripetal			
	force that acts towards the centre of the circle			
	HT ONLY: Explain that inertial mass is a measure of how difficult it is to change the velocity of an			
	Object			-
	Recall and apply Newton's third law both to equilibrium situations			-
	HT ONLY: Recall and apply Newton's third law collision interactions and relate it to the conservation of momentum in collisions			
	HT ONLY: Define momentum, recall and use the equation: $p = m \times v$			
	HT ONLY: Describe examples of momentum in collisions			
	HT ONLY: Use Newton's second law as: $F = (mv - mu)/t$			
	Explain methods of measuring human reaction times and recall typical results			
				
	Recall what the stopping distance of a vehicle is the sum of Explain that the stopping distance of a vehicle is affected by a range of factors and name the factors			
	Describe the factors that could affect a driver's reaction time			
				
	Explain the dangers caused by large decelerations HT ONLY: Estimate the forces involved in typical situations on a public road due to decelerations.			
	HT ONLY: Estimate the forces involved in typical situations on a public road due to decelerations Estimate how the distance required for a road vehicle to stop in an emergency varies over a range of			\vdash
	typical speeds			
	Carry out calculations on work done to show the dependence of braking distance for a vehicle on initial			\vdash
	velocity squared			
	velocity squared			Ц

	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 1 (Topics 3&4)	T _	ı _	Τ
Topic	Student Checklist	R	Α	G
	Recall and use the equation to calculate the change in gravitational PE when an object is raised above			
	the ground: $\triangle GPE = m \times g \times \Delta h$			
	Recall and use the equation to calculate the amounts of energy associated with a moving object: $KE = \frac{1}{2}$			
	Draw and interpret diagrams to represent energy transfers			-
		-		-
	Explain what is meant by conservation of energy	-		╄
	Analyse the changes involved in the way energy is stored when a system changes for an object projected upwards or up a slope			
>	Analyse the changes involved in the way energy is stored when a system changes for a moving object hitting an obstacle			
energ	Analyse the changes involved in the way energy is stored when a system changes for an object being accelerated by a constant force			
Topic 3 – Conservation of energy	Analyse the changes involved in the way energy is stored when a system changes for a vehicle slowing down			
servat	Analyse the changes involved in the way energy is stored when a system changes for bringing water to a boil in an electric kettle			
– Con	Explain that where there are energy transfers in a closed system there is no net change to the total energy in that system			
opic 3	Explain that mechanical processes become wasteful when they cause a rise in temperature so dissipating energy in heating the surroundings			
ř	Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful ways			
	Explain ways of reducing unwanted energy transfer including through lubrication, thermal insulation			T
	Describe the effects of the thickness and thermal conductivity of the walls of a building on its rate of cooling qualitatively			
	Recall and use the equation: efficiency = useful energy transferred / total energy supplied			T
	HT ONLY: Explain how efficiency can be increased			T
	Describe the main energy sources available for use on Earth and compare the ways in which both			T
	renewable and non-renewable sources are used			
	Explain patterns and trends in the use of energy resources			Ī

	Recall that waves transfer energy and information without transferring matter	
	Describe evidence that with water and sound waves it is the wave and not the water or air itself that	
	travels	
	Define and use the terms frequency and wavelength as applied to waves	
	Use the terms amplitude, period, wave velocity and wavefront as applied to waves	
	Describe the difference between longitudinal and transverse waves by referring to sound,	
	electromagnetic, seismic and water waves	
	Recall and use both the equations for all waves: $v = f \times \lambda$ and $v = x/t$	
	Describe how to measure the velocity of sound in air and ripples on water surfaces	
	HT ONLY: Calculate depth or distance from time and wave velocity	
es	Describe the effects of reflection, refraction, transmission, absorption of waves at material interfaces	
Topic 4 – Waves	Explain how waves will be refracted at a boundary in terms of the change of direction	
>	HT ONLY: Explain how waves will be refracted at a boundary in terms of the change of speed	
4	HT ONLY: Recall that different substances may absorb, transmit, refract or reflect waves in ways that	
piq	vary with wavelength	
7	HT ONLY: Describe the processes which convert wave disturbances between sound waves and	
	vibrations in solids	
	HT ONLY: Explain why processes that convert wave disturbances only work over a limited frequency	
	range	
	HT ONLY: Use the process that converts wave disturbances to explain the way the human ear works	
	HT ONLY: Recall the frequency of ultrasound and state its units	
	HT ONLY: Explain uses of ultrasound and infrasound	
	Describe how changes, if any, in velocity, frequency and wavelength, in the transmission of sound waves	
	from one medium to another are inter-related	
	Core Practical: Investigate the suitability of equipment to measure the speed, frequency and wavelength	
	of a wave in a solid and a fluid	

Topic	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 1 (Topics 5&6) Student Checklist	R	Α	G
торіс	Explain, with the aid of ray diagrams, reflection, refraction and total internal reflection (TIR), including		_	
	the law of reflection and critical angle			
	Explain the difference between specular and diffuse reflection			
	Explain how colour of light is related to differential absorption at surfaces and transmission of light			<u> </u>
	through filters			
	Relate the power of a lens to its focal length and shape			
	Use ray diagrams to show the similarities and differences in the refraction of light by converging and			<u> </u>
	diverging lenses			
	Explain the effects of different types of lens in producing real and virtual images			Г
	Recall that all electromagnetic waves are transverse, that they travel at the same speed in a vacuum			
Ε	Explain, with examples, that all electromagnetic waves transfer energy from source to observer			
Ī	Investigate refraction in rectangular glass blocks in terms of the interaction of electromagnetic waves			
၁ဓင	with matter			
c si	Recall the main groupings of the continuous electromagnetic spectrum			
eti	Describe the electromagnetic spectrum			
agr	Recall that our eyes can only detect a limited range of frequencies of electromagnetic radiation			
E	HT ONLY: Recall that different substances may absorb, transmit, refract or reflect electromagnetic			
Topic 5 – Light and the electromagnetic spectrum	waves in ways that vary with wavelength			
e	Explain the effects of differences in the velocities of electromagnetic waves in different substances			
þe	Explain that all bodies emit radiation, that the intensity and wavelength distribution of any emission			
ğ	depends on their temperature			
r ar	HT ONLY: Explain that for a body to be at a constant temperature it needs to radiate the same average			
igh	power that it absorbs			
_	HT ONLY: Explain what happens to a body if the average power it radiates is less or more than the			
C 5	average power that it absorbs			
ido	HT ONLY: Explain how the temperature of the Earth is affected by factors controlling the balance			
T	between incoming radiation and radiation emitted			
	Core Practical: Investigate how the nature of a surface affects the amount of thermal energy radiated or			
	absorbed			
	Recall that the potential danger associated with an electromagnetic wave increases with increasing			
	frequency			
	Describe the harmful effects on people of excessive exposure to electromagnetic radiation			
	Describe some uses of electromagnetic radiation			_
	HT ONLY: Recall that radio waves can be produced by, or can themselves induce, oscillations in			
	electrical circuits	_		L
	Recall that changes in atoms and nuclei can generate radiations over a wide frequency range and be			
	caused by absorption of a range of radiations			l

-	Describe the structure of the atom	
	Recall the typical size (order of magnitude) of atoms and small molecules	
	Describe the structure of nuclei of isotopes	
	Define the term isotope	
	Recall the relative masses and relative electric charges of protons, neutrons, electrons and positrons	
	Recall that in an atom the number of protons equals the number of electrons and is therefore neutral	
	Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus	
	Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation	
	Explain how atoms may form positive ions	
	Recall that alpha, β–, β+, gamma rays and neutron radiation are emitted from unstable nuclei in a	
	random process	
	Recall that alpha, β–, β+ and gamma rays are ionising radiation	
	Explain what is meant by background radiation	
	Describe the origins of background radiation from Earth and space	
	Describe methods for measuring and detecting radioactivity limited to photographic film and a Geiger-	
Topic 6 – Radioactivity	Müller tube	
	Recall what alpha, beta and gamma radiation are made up of	
	Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise	
	Describe how and why the atomic model has changed over time including reference to the different	
	models and scattering experiments	
adi	Describe the process of β – and β + decay	
<u>ا</u>	Explain the effects on the atomic (proton) number and mass (nucleon) number of radioactive decays (α,	
9 3	β, γ and neutron emission)	
ppic	Recall that nuclei that have undergone radioactive decay often undergo nuclear rearrangement with a	
ĭ	loss of energy as gamma radiation	
	Use given data to balance nuclear equations in terms of mass and charge	
	Describe how the activity of a radioactive source decreases over a period of time	
	Recall that the unit of activity of a radioactive isotope is the Becquerel, Bq	
	Explain what half life of a radioactive isotope is	
	Explain that it cannot be predicted when a particular nucleus will decay but half-life enables the activity	
	of a very large number of nuclei to be predicted	
	Use the concept of half-life to carry out simple calculations on the decay of a radioactive isotope,	
	including graphical representations	
	Describe uses of radioactivity in: the home, industry and medicine	
	Describe the dangers of ionising radiation in terms of tissue damage and possible mutations and relate	
	this to the precautions needed	
	Explain how the dangers of ionising radiation depend on half-life and relate this to the precautions	
	needed	
	Explain the precautions taken to ensure the safety of people exposed to radiation, including limiting the	
	dose	
	Describe the differences between contamination and irradiation effects and compare the hazards	
	associated with these two	